Phase separation of composite materials through simultaneous polymerization and crystallization
نویسندگان
چکیده
Composite materials have attracted much interest because of the emergent properties originating from the components. A variety of methods have been studied to control the morphology of composites based on noncrystalline polymers and crystalline materials. However, it is not easy to control complex morphologies, such as segregated sea-island structures, on the submicrometer scale. Polymerization induces crystallization, because supersaturation, which is required for crystallization, is achieved by the consumption of the monomer. Here we report a phase-separation approach based on simultaneous polymerization and crystallization as a new method for the morphological control of composite materials. Segregated polymer and organic crystal domains are obtained by polymerization of an organic monomer solution accompanied by simultaneous crystallization. The phase separation induced the generation of composite materials consisting of a redox-active quinone crystal and conductive polymer with a segregated structure on the submicrometer scale. The segregated composite of 2,3-dichloro-1,4naphthoquinone and polypyrrole showed enhanced charge-storage properties based on the smooth redox reaction. The present phase-separation approach can be applied to a variety of functional segregated composite materials consisting of crystalline and polymer materials. NPG Asia Materials (2017) 9, e377; doi:10.1038/am.2017.53; published online 21 April 2017
منابع مشابه
Phase Separation through Simultaneous Polymerization and Crystallization for Composite Materials
متن کامل
Synthesis of Polypyrrole Coated SnO2-ZnO Electrospun Nanofibers via Vapor Phase Polymerization Method
This paper reports the synthesis of polypyrrole coated SnO2/ZnOelectrospunnanofibers via vapor phase polymerization method. In order to prepare one dimensional (SnO2- ZnO)/polypyrrole with the core sheath structure, first SnO2-ZnO composite nanofibers were synthesized via electrospinning method followed by adsorption of Fe 3+ on the surface of the SnO2-ZnO nanofibers and finally pyrrole w...
متن کاملCrystallization Behavior and Mechanical Properties of In-situ Alumina-Zirconia Composite Bodies
In-situ alumina-zirconia composite bodies were fabricated by heat treatment of gibbsite-zircon-kaolinite mixture at 1450℃. The current research investigated crystallization behavior and mechanical properties of the mentioned mixture in the presence of 5 wt.% MgO as an additive. X-ray diffraction (XRD) results showed that alumina, zirconia, and magnesium aluminosilicate were crystallized during ...
متن کاملProperties of triple shape memory composites prepared via polymerization-induced phase separation.
Research in the field of shape memory polymers has recently witnessed the introduction of increasing complexity of material response, including such phenomena as triple/multishape behavior, temperature memory, and reversible actuation. Ordinarily, such complexity in physical behaviour is achieved through comparable complexity in material composition and synthesis. Seeking to achieve a triple sh...
متن کاملPreparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin
Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide), and ...
متن کامل